Thermal error modeling of motorized spindle based on Elman neural network optimized by sparrow search algorithm
نویسندگان
چکیده
The thermal error of the motorized spindle is an essential factor affecting machining accuracy high-speed numerically controlled machines. establishment a model for compensation can effectively improve impact errors on machine tool. This paper proposes sparrow search algorithm to optimize Elman neural network predict in spindles. First simulation analysis characteristics A02 spindle. Based results, position temperature measuring points arranged and experiment displacement data at different rotational speeds were collected; secondly, method combining pedigree clustering k-means used perform cluster each measurement point, grey correlation degree determine between error. Three temperature-sensitive screened from ten points, which reduced collinearity number independent variables model. Finally, weights thresholds are optimized by algorithm, prediction based SSA-Elman established compared with Particle Swarm Optimized Neural Network results show that has highest exhibits good stability generalization ability.
منابع مشابه
Study on Optimized Elman Neural Network Classification Algorithm Based on PLS and CA
High-dimensional large sample data sets, between feature variables and between samples, may cause some correlative or repetitive factors, occupy lots of storage space, and consume much computing time. Using the Elman neural network to deal with them, too many inputs will influence the operating efficiency and recognition accuracy; too many simultaneous training samples, as well as being not abl...
متن کاملNumerical Analysis of Modeling Based on Improved Elman Neural Network
A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to d...
متن کاملCSLMEN: A New Optimized Method for Training Levenberg Marquardt Elman Network Based Cuckoo Search Algorithm
RNNs have local feedback loops within the network which allows them to shop earlier accessible patterns. This network can be educated with gradient descent back propagation and optimization technique such as second-order methods; conjugate gradient, quasi-Newton, Levenberg-Marquardt have also been used for networks training [14, 15]. But still this algorithm is not definite to find the global m...
متن کاملError Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network
State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Journal of Advanced Manufacturing Technology
سال: 2022
ISSN: ['1433-3015', '0268-3768']
DOI: https://doi.org/10.1007/s00170-022-09260-7